P.T.V.A.'s

M.L.Dahanukar College of Commerce

Teaching Plan: 2023 – 2024

Department: Information Technology

Class: M.Sc (part I) – Sem-II
Subject: BIG DATA ANALYTICS

Name of the Faculty: Prof. Supritha Bhandary

Month	Topics to be Covered	Internal	Number
		Assessment	of
			Lectures
MAR	Introduction to Big Data, Characteristics of Data, and Big Data Evolution of Big Data, Definition of Big Data, Challenges with big data, Why Big data? Data Warehouse environment, Traditional Business Intelligence versus Big Data. Examples of big Data Analytics. Big Data Analytics, Classification of Analytics, Challenges of Big Data, Importance of Big Data, Big Data Technologies, Data Science, Responsibilities, Soft state eventual consistency. Data Analytics Life Cycle Analytical Theory and Methods: Clustering and Associated Algorithms, Association Rules		18
APR	Apriori Algorithm, Candidate Rules, Applications of Association Rules, Validation and Testing, Diagnostics, Regression, Linear Regression, Logistic Regression, Additional Regression Models Analytical Theory and Methods: Classification, Decision Trees, Naïve Bayes, Diagnostics of Classifiers, Additional Classification Methods, Categorizing Documents by Topics, Determining Sentiments		20
MAY	Data Product, Building Data Products at Scale with Hadoop, Data Science Pipeline, Hadoop Ecosystem, Operating System for Big Data, Concepts, Hadoop Architecture Distributed Analysis and Patterns, Computing with Keys, Design Patterns, Last-Mile Analytics, Data Mining and Warehousing, Analytics with higher level APIs, Pig, Spark's higher level APIs		22

Sign of Faculty

M.L. Dahanukar College of Commerce

Teaching Plan: 2023 - 24

Department: I.T. Class: M.Sc.(I.T.) Semester: II

Subject: Modern Networking

Name of the Faculty: Prof. Gufran Qureshi

Month	Topics to be Covered	Internal	Number of
		Assessment	Lectures
Mar	Unit I		16
	Modern Networking		
	Elements of Modern Networking		
	The Networking Ecosystem ,Example Network		
	Architectures, Global Network Architecture, A		
	Typical Network Hierarchy Ethernet Applications		
	of Ethernet Standards Ethernet Data Rates Wi-Fi		
	Applications of Wi-Fi, Standards Wi-Fi Data Rates		
	4G/5G Cellular First Generation Second		
	Generation, Third Generation Fourth		
	Generation Fifth Generation, Cloud Computing		
	Cloud Computing Concepts The Benefits of Cloud		
	Computing Cloud Networking Cloud Storage,		
	Internet of Things Things on the Internet of		
	Things, Evolution Layers of the Internet of		
	Things, Network Convergence Unified		
	Communications, Requirements and Technology		
	Types of Network and Internet Traffic, Elastic		
	Traffic, Inelastic Traffic, Real-Time Traffic		
	Characteristics Demand: Big Data, Cloud		
	Computing, and Mobile TrafficBig Data Cloud		
	Computing,, Mobile Traffic, Requirements: QoS		
	and QoE,,Quality of Service,Quality of Experience,		
	Routing Characteristics, Packet Forwarding,		
	Congestion Control ,Effects of Congestion,		
	Congestion Control Techniques, SDN and NFV		
	Software-Defined Networking, Network Functions		
	Virtualization Modern Networking Elements		
Apr	Software-Defined Networks		16
	SDN: Background and Motivation, Evolving		
	Network Requirements Demand Is		
	Increasing, Supply Is Increasing Traffic Patterns		

	Are More ComplexTraditional Network	
	Architectures are Inadequate, The SDN Approach	
	Requirements SDN Architecture Characteristics of	
	Software-Defined Networking, SDN- and NFV-	
	Related Standards Standards-Developing	
	Organizations Industry Consortia Open	
	Development Initiatives, SDN Data Plane and	
	OpenFlow SDN Data Plane, Data Plane Functions	
	Data Plane Protocols OpenFlow Logical Network	
	Device Flow Table Structure Flow Table Pipeline,	
	The Use of Multiple Tables Group Table	
	OpenFlow Protocol, SDN Control Plane	
	SDN Control Plane Architecture Control Plane	
	Functions, Southbound Interface Northbound	
	InterfaceRouting, ITU-T Model, OpenDaylight	
	OpenDaylight Architecture OpenDaylight Helium,	
	REST REST Constraints Example REST API,	
	Cooperation and Coordination Among	
	Controllers, Centralized Versus Distributed	
	Controllers, High-Availability Clusters Federated	
	SDN Networks, Border Gateway Protocol Routing	
	and QoS Between Domains, Using BGP for QoS	
	Management IETF SDNi OpenDaylight SNDi	
	SDN Application Plane SDN Application Plane	
	Architecture Northbound Interface Network	
	Services Abstraction Layer Network Applications,	
	User Interface, Network Services Abstraction	
	Layer Abstractions in SDN, Frenetic Traffic	
	Engineering PolicyCop Measurement and	
	Monitoring Security OpenDaylight DDoS	
	Application Data Center Networking, Big Data	
	over SDN Cloud Networking over SDN Mobility	
	and Wireless Information-Centric Networking	
	CCNx, Use of an Abstraction Layer	
Apr	Unit II	16
	Virtualization, Network Functions Virtualization:	
	Concepts and Architecture, Background and	
	Motivation for NFV, Virtual Machines The Virtual	
	Machine Monitor, Architectural Approaches	
	Container Virtualization, NFV Concepts Simple	
	Example of the Use of NFV, NFV Principles High-	
	Level NFV Framework, NFV Benefits and	
	Requirements NFV Benefits, NFV Requirements,	
	NFV Reference Architecture NFV Management	
	and Orchestration, Reference Points	
	Implementation, NFV Functionality, NFV	
	Infrastructure,Container Interface,Deployment of	
	NFVI Containers,Logical Structure of NFVI	

	1	T	T
	Domains, Compute Domain, Hypervisor		
	Domain,Infrastructure Network		
	Domain, Virtualized Network Functions, VNF		
	Interfaces, VNFC to VNFC Communication, VNF		
	Scaling, NFV Management and Orchestration,		
	Virtualized Infrastructure Manager, Virtual		
	Network Function Manager, NFV Orchestrator,		
	Repositories, Element Management, OSS/BSS,		
	NFV Use Cases Architectural Use Cases, Service-		
	Oriented Use Cases, SDN and NFV Network		
	Virtualization, Virtual LANs ,The Use of Virtual		
	LANs, Defining VLANs, Communicating VLAN		
	Membership, IEEE 802.1Q VLAN Standard, Nested		
	VLANs, OpenFlow VLAN Support, Virtual Private		
	Networks, IPsec VPNs, MPLS VPNs, Network		
	Virtualization, Simplified Example, Network		
	Virtualization, Simplified Example, Network Virtualization Architecture, Benefits of		
	Network Virtualization, OpenDaylight's Virtual		
	Tenant Network, Software-Defined		
	Infrastructure, Software-Defined Storage, SDI		
	Architecture		
N4011			12
May	Defining and Supporting User Needs, Quality of		12
	Service, Background, QoS Architectural		
	Framework, Data Plane, Control Plane,		
	Management Plane, Integrated Services		
	Architecture, ISA Approach ISA Components, ISA		
	Services, Queuing Discipline, Differentiated		
	Services, Services, DiffServ Field, DiffServ		
	Configuration and Operation, Per-Hop Behavior,		
	Default Forwarding PHB, Service Level		
	Agreements, IP Performance Metrics, OpenFlow		
	QoS Support, Queue Structures, Meters,		
	QoE: User Quality of Experience, Why		
	QoE?,Online Video Content Delivery, Service		
	Failures Due to Inadequate QoE Considerations		
	QoE-Related Standardization Projects,		
	Definition of Quality of Experience, Definition of		
	Quality, Definition of Experience Quality		
	Formation Process, Definition of Quality of		
	Experience, QoE Strategies in Practice, The		
	QoE/QoS Layered Model Summarizing and		
	Merging the ,QoE/QoS Layers, Factors		
	Influencing QoE, Measurements of QoE,		
	Subjective Assessment, Objective Assessment,		
	End-User Device Analytics, Summarizing the QoE		
	Measurement Methods, Applications of QoE		
	Network Design Implications of QoS and QoE		
	Classification of QoE/ QoS Mapping Models,		

BlackBox Media-Based QoS/QoE Mapping	
Models, Glass-Box Parameter-Based QoS/QoE	
Mapping Models, Gray-Box QoS/QoE Mapping	
Models, Tips for QoS/QoE Mapping Model	
Selection, IP-Oriented Parameter-Based QoS/QoE	
Mapping Models, Network Layer QoE/QoS	
Mapping Models for Video Services, Application	
Layer QoE/QoS Mapping Models for Video	
Services Actionable QoE over IP-Based	
Networks, The System-Oriented Actionable QoE	
Solution, The Service-Oriented Actionable QoE	
Solution, QoE Versus QoS Service Monitoring,	
QoS Monitoring Solutions, QoE Monitoring	
Solutions, QoE-Based Network and Service	
Management, QoE-Based Management of VoIP	
Calls, QoE-Based Host-Centric Vertical Handover,	
QoE-Based NetworkCentric Vertical Handover	

Sign of Faculty

M.L. Dahanukar College of Commerce

Teaching Plan: 2023 - 24

Department: I.T. Class: M.Sc.(I.T.) Semester: II

Subject: Microservice Architecture

Name of the Faculty: Prajakta Joshi

Month	Topics to be Covered	Internal Assessment	Number of Lectures
March	Microservices: Understanding Microservices, Adopting Microservices, The Microservices Way.		06
April	Unit 2 Service Design: Microservice Boundaries, API design for Microservices, Data and Microservices, Distributed Transactions and Sagas, Asynchronous Message-Passing and Microservices, dealing with Dependencies,		12
May	System Design and Operations: Independent Deployability, More Servers, Docker and Microservices, Role of Service Discovery, Need for an API Gateway, Monitoring and Alerting. Adopting Microservices in Practice: Solution Architecture Guidance, Organizational Guidance, Culture Guidance, Tools and Process Guidance, Services Guidance.		12

Sign of Faculty

ML Dahanukar College

Teaching Plan: 2023 - 24

Department: <u>I.T.</u> Class: <u>MSc.(I.T.) Part-I</u> Semester: <u>II</u>

Subject: Computer Vision

Name of the Faculty: Ms. Rasika Sawant

Month	Topics to be Covered	Internal	Number of
		Assessment	Lectures
March	Unit 1:		12
	Perform Geometric transformations		
	Perform Image Stitching		
	Perform Camera Calibration		
April	Unit 2:		24
_	Perform the following:		
	a. Face detection		
	b. Object detection		
	c. Pedestrian detection		
	d. Face recognition		
	Construct 3D model from images		
	Implement object detection and tracking from		
	video		
May	Unit 3:		22
	Perform Feature extraction using RANSAC		
	Perform Colorization		
	Unit 4:		
	Perform Text detection and recognition		
	Perform Image matting and Composting		

Sign of Faculty